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TWO-STREAM INSTABILITY FOR A SCATTERED BEAM
PROPAGATING IN A COLLISIONAL PLASMA

by

Barry S. Newberger and Lester E. Thode
Theoretical Division
Los Alamos Scientific Laboratory

1. INTRODUCTION

It has long been appreciated that the high-frequency (w ™ uh) two-stream
instability can be stabilized if the background plasma is sufficiently colli-
sional and the beam has a finite velocity spread.1 With a renewed interest in
relativistic electron beams for plasma heating2 and in order to interpret exper-
iments on the propagation of these beams through neutral gases at low pres-

sures,a’a

we have been investigating this problem anew.

The early calculations were essentially nonrelativistic with relativistic
effects modeled in an ad hoc way through introduction of an anisotropic mass.
Phenomenological models used to interpret neutral gas propagation experiments3
are essentially equivalent to the early, nonrelativistic, Vlasov calculations.
In order to put these models in perspective and to provide a linear theory from
which nonlinear saturation amplitudes can be obtained by partial numerical
simulation techniques,j we have been carrying out a rigorous Vlasov theory of
the collisional stabilization of the two-stream instability in a relativistic
electron beam. The equilibrium we choose is that of the so-called "scattered”
beamz’6 for which the electrons are monochromatic in energy but which have a
distribution in the directions of their momenta., This distribution is charac-
teristic of that produced by scatte:ring in an anode foil and, in any case, the
qualitative results are likely to be typical of those for other reasonable
choices of relativistic cistribution function. The stability of pinched beams
can be estimated by taking the mean scattering angle, ®, which characterizes the
distribution function to be equal to tlie betatron angle, (IBIZIA)H where IB is
the beam currcnt and IA the Alfven current. The beam and plasma are otherwise
aomogeneous and infinite in extent.

The linear dispersion relation is described in Sec. II along with the iow-
est order correction due to momentum scstte: to the cold beam, one-dimensional

dispersion relation. Some numericsl results are presented in Sec. III and a
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II. LINEAR DISPERSION RELATION

In this section, the linear dispersion relation for electrostatic waves in
the beam-plasma system is presented.

The plasma is characterized by its plasma frequency wb and a8 (constant)
collision frequency v, measured in units of w_as are all frequencies below.
The beam is characterized by a mean momentum Po (or energy Yp = 1+ Pg)lj in

units of the electron rest momentum m,C and a mean scattering angle 0. The
beam distribution function6 is taken to be

£(p) = —g—i 6(p - Py)csch(a)exp(acoso) (1)
4RP0

where a = 2/52.

The dispersion relation is 1 = ep(w) + eb(w,k) vwhere ep is the plasma
dielectric function and € that for the beam. The wave number k is measured in
units of wp/ﬂoc. The plasma part is well known:

- 1 ym, 1
%M=7(—%———). (2)

w \m, 1+ v/uw
1 P

The beam part is more complicated. For the 1-D case (propagation along the

beam), it is given by

aa kcoth(a) + w + oa aw/k

ok w -k 2y2 sinh(a)

£y (0, K) ([a(1 - B2WA/K%) - 285w/K]e

{E,[a(w/k + 1)] - E,[a(w/k - 1]}

Zﬂglsinh(a)(l/a + w/k) + cosh(a)]) (3)

where pg = (1 - llyg), o= nb/np and El(z) is the exponential integral.6
For wave propagating obliquely to the beam, (2-D case) the b~am contribu-

tion is markedly more complicated. We have

-aﬂz uaﬂz

_ "% 0
N 2
yok 270b

I(w,k,a) , (4)
ginh(a)

and further
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I(w,k,a) = -(wz + kz/ﬂg) s - 2w 5l (5)
and
)
1o = - bew (S25Y) - 1F k) + Fy k0] (6)

k /k.

1 and F2 are given in terms of tabulated transcendental functions by

where cos Y
F

(-]
Fy = -E;(sy) + Eq(-ax) + Z (l)gi)’» ;.:-?nz;)l {Eznﬂ("‘.’)
n=1

= \2n
- (z:) E2n+1(_axa)} - in sgn[Im(ai)]Io(-a;}) N
where § = (- w2 /k®)Y giny
X = -(1 + W)
a k ’

En(z) is the exponential integral of n'th orc:ler7 and I0 is the modified Bessel
function of the first kind and zero order. The last term provides the analytic
continuation of 129 into the lower half w-plane and the values of the exponential
integrals are on their principle branch, =-n < arg(z) $ n. We remark that the
Landau-like iantegrals which give rise to the functions Fl and F2 (given below)
have been considered by direct numerical integration in Ref. 6. The singular
nature of the integrals makes pumerical integration very difficult and the
analytic continuation to the lower half plane could not be easily extracted.
The representation of Fz depends on the value of p = xb/;', where Xy = 1 -
w/k cos .
For |1 - y| < 2, we have

F 5552; ylk,a(y - xb)]
= = ,a(y - x
2 (2ay)

. }f: (1)@)...20 - 1) Yo + 12, oG - xb)} , )
1 (2)(4)+++(20) (~ay)"
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where y(a,z) is the incomplete gamma funct.ion.s If be/;l > 1, then

o
F = -E (~ax ) + E (_.5) + (1(3)... (2n - 1)
2 1 b 1 (2)(4)+++(2n)
n=1
_ = \2n
x EZn+1(-ay) - (zf) EZn-l-l(-.xb) . 9)
\\\\\ \ The domain of wvalidity of the two
\%\\ representations are illustrated in
33 2 Fig. 1. There is a finite region of
3 overlap in the plane deleted of the

point p = -1. It can be shown that

the choice of domain of § above and

the definitions of x, and y preclude

the value of p = -1. There is a

choice of branch implicit in Eq. (B).

The choice is made by requiring that

the values of Fz and its derivative

be the same in both representations

fig. 1 in the overlap region.
Domains of validity in th= complex In general, the dispersion rela-
H-plane of the two representations tion must be solved numerically; how-
of Fz. Eq. 87//,. Eq. 9&\\\. ever, in the 1-D case, it is easy to
both:m. solve for the lowest order correction

to the cold beam dispersion relation.
This limit is defined by a > 1, a6 > 1 where 6 is a typical growth rate (in

units of mp). The dispersion relation is in this case

1 a 1 2a 1 . (10)

- +
wz(l + v/w) ygkz (w/k - 1)

1 -
2 ygkza w/k - 1)°

In the collision-free case (v = 0), this equation has the solution for the
growth rate

11)

2mi/3 (1 _ ,1/3,4mil3 24/3e-2nil3)

173 3 n- 3
2

-1/3
where 8 13-) [
\Yo



- )]

In the collisional case, the growth rate becomes

. 1/2 . Caws
%= e3n1/4[1 + i(_‘;_) 1 M + e31[1/4) - e 3n1/4€] (12)
Yo¥ v

where now

=&

In the limit a » ®, the cold beam case, the rasults above reduce to the well-

known growth rates.9 In both the collisionless case and collisiopal case, we

find the important result that there are no 0(52) corrections to the cold beam

growth rate. Thus, to have corrections of this order appearing in the growth

rate, we must have a6 =1 at least. This is consistent with our recent results

in the interpretation of the Lawrence Livermore Laboratory Astron experiments.10

Our requirement that ad ¥ 1 implies a scattering angle, 6, of about 60 mrad for

the effects of scatter to becom= important. The Astron beam had a 8 of ~ 15 mrad
and this is consistent with our findings presented in Ref. 10 that the beam was

behaving essentially as a cold beam.

III. NUMERICAL SOLUTIONS

In order to obtain results for general values of the parameters, the dis-
pefsion relation must be solved numerically. In the 1-D case, we have evaluated
the collision frequencies necessary for stabilization of the two-stream mode
over a wide range of parameters and compared these with the early results. The
scaling over two orders of magnitude in YO are indicated in Table I. The beam-
to-plasma density ratio has been held fixed at 1072, 2 reagonahlv tumiral valua



TABLE I

STABILIZING COLLISION FREQUENCY FOR
TWO-STREAM INSTABILITY IN A SCATTERED BEAM

Mean Beam-to-" iasma Singhaus Stabilizing
Relativistic Scattering Density Ratjo, Collision Collisio
Factor, Y, Angle, © nb/np Frequency, v Frequency, v,
o -2 -2
11 9.29 0.01 3.3 x10 8.7 x 10
100 3.10° 0.01 3.6 x 1073 5.8 x 1072
1000 0.98° 0.01 3.6 x 1074 4.7 x 1072

®Collisions to stabilize based on Singhaus theory v, = 3.04/703 nb/np B°2/54.

b

and the scattering sngle has been taken to be the betatron angle.

All frequencies are in units of the plasma frequency.

The differ-

ence in the scaling of the critical collision frequency between our results and
those based on the earlier models is significant.

The mechanism of the collisional stabilization is illustrated in the plot
of growth rate as a function of collision frequency presented in Fig. 2. The
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Instability 'growth rate & as a
function of plssma electron colli-
sion frequency.

parameter values are typical of the Ion
Physics FX-25 diode beam.a
scattering angle is that to be expected

The mean

from Moliere scattering in a 1 mil Ti
anode foil. The results are qualitative-
ly the same for other parameter values
if the mean scattering is such that the
instability in the abhsence of rollisions
regime.6
We observe that the growth rates are only
weakly affected by collisions until the

collision frequency approaches the criti-

is in the quasi-hydrodynamic

cal collision frequency at which point

the growth is quenched very rapidly.
Physically, the phase velocity is moved
into the body of the distribution by the
collisions and the instability then be-
comes kinetic in character. Only when it
is kinetic do the collisions overcome the
growth of the mode. We have recently made

progress in solving the 2-D dispersion



relation given in Sec. II. The results are consistent with this interpretation.

We find that at small collision “requencies, the off-axis modes have larger

growth rates out to some value of propagation angle. As the collision frequency

is increased, this cone of angles decreases. When the critical collision fre-

quency is approached, the cone is essentially of 2zero width with only the

parallel mode remaining. This is characteristic of the kinetic regime where the

parallel mode has the largest growth rate.6 It must be emphasized, however, that
the 2-D results are of a very preliminary nature and a thorough study of the

instability in this case remains to be carried out.

IV. CONCLUSION AND SUMMARY

We have made significant progress in the understanding of the collisional
stabiiization of the high-frequency two-stream instability in a relativistic
electron beam through a rigorous Vlasov treatment.

Substantially different scaling with parameters are obtained in comparison
with previous, essentially phenomenological, models and we have gained insight
into the mechanism of the stabilization process. Further investigation of the
2-D case remains to be done. The issue of stabilization of the two-stream in-
stability in finite geometry is ar yet unexplored as is that of nonlinear satur-
ation, by trapping, of thc instability in the presence of momentum spread on the
beam and collisions on the plasma electrons. These are important in the appli-

2,11 and

cation of relativistic electron beams to the heating of dense plasmas
possibly in the interpretation of neutral gas propagation experiments.lo Exten-
sion of our research into these areas will necessarily rely on the investigations

outlined above.
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